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Abstract: - In the present research the problem of transferring a spacecraft from the Earth to the Moon with 
minimum fuel consumption is considered. The Two-Body model is assumed to be a valid mathematical 
representation for the dynamics during the transfer. The spacecraft starts in a Low Earth Orbit and then goes to a 
Polar Orbit around the Moon. In previous publications, impulsive and optimal low thrust maneuvers were used to 
perform this transfer. In the present paper this research is extended to consider two types of sub-optimal 
maneuvers: the first one using a linear and the second one using a quadratic form for the direction of the thrust. To 
obtain those low thrust sub-optimal maneuvers, the Euler-Lagrange equations are also used here, as done before 
in the optimal approach. They give a set of differential equations that can be used to solve numerically the 
problem. The results obtained here show that the extra fuel expenditure caused by using both sub-optimal 
approaches for the control are small, so this is an interesting approach if a simple implementation for the 
hardware is desired. Two types of missions are studied, one with a single spacecraft and another one with a set of 
two spacecrafts. 
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1   Introduction 
Missions to the Moon are one of the most interesting 
activities in aerospace engineering. The construction 
of a manned lunar base is one of the next steps in 
space. In this context, missions to the Moon to 
explore its surface are very important. In particular, a 
polar orbit is very interesting, because it can make 
measurements in parts of the Moon that is not yet 
known.  
     So, the Lunar Polar Orbiter mission is an 
interesting idea to be considered. It is made by one or 
two spacecrafts that are in a polar orbit around the 
Moon. The goal is to make measurements in the 
surface of the Moon and in its neighborhood. The 
data collected is then used for several tasks, like the 
site selection of a lunar base; improvements of 
trajectory calculations for orbits around the Moon; 
study of mineral exploitation, etc.  
     This paper makes a study of trajectories that can 
be used to go to the Moon. It is assumed that the 
vehicle starts its trajectory in a Low Earth Orbit that 
is circular with semi-major axis of 6570 km and in 
the plane of the motion of the Moon around the 
Earth. The mathematical model given by the 
Two-Body problem is valid for each phase of the 
mission. 

     The main goal is to look in more details the 
differences, in terms of fuel consumption, between 
the two options of engines: impulsive and low thrust. 
In particular, to complement results available in the 
literature, as shown in the next section, to study a 
new approach to this transfer: the low thrust 
maneuver using sub-optimal control, where the 
direction of the thrust is assumed to be a linear or a 
quadratic function of the range angle, that is a 
variable that replaces the time in the equations of 
motion. 
     For the general problem of orbital maneuvers, 
many alternatives are studied in the literature, 
considering different conditions. An important field 
of research considers the so called low thrust 
maneuver. In this model, a force with low magnitude 
is applied during a finite time. To find the trajectory 
of the spacecraft is necessary to integrate the 
equations of motion. There are many results in the 
literature considering this model, beginning with the 
works of Lawden ([1], [2]). Many other more recent 
researches are available dealing with this model, like 
references [3] to [14].  
     A second approach uses the idea of an impulsive 
thrust, which is the case where the thrust is assumed 
to have an infinity magnitude. Several papers used 
this approach, like references [15] to [35]. 
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      Later, the idea of gravitational capture has been 
considered. In this situation the perturbation of a 
third-body [36] can be used to decrease the fuel 
consumption of an orbital maneuver. References [37] 
to [42] explain this idea in some detail. 
      Another approach that appeared in the literature, 
to find alternatives to reduce fuel expenditure in 
space missions, is the swing by maneuvers. 
References [43] to [58] show more details, as well as 
missions using this technique. 
     Looking in more detail for researches directly 
involved in transfers to the Moon, to have an idea of 
the state of the art of this particular problem, it is 
possible to find several different approaches to solve 
it. Belbruno and Miller [59] shows a direct 
application of the gravitational capture concept 
mentioned before in transfers to the Moon, with the 
objective of saving fuel in the mission by getting 
some energy from the gravity of the Sun and the 
Earth. Using the same idea of low thrust propulsion 
explored in the present paper, but dividing the 
mission in three stages, Pierson and Kluever [60] 
shows some options for this type of trajectory. After 
that, Betts and Erb [61] used an approach that 
combines a discretization of the trajectory with a 
nonlinear programming algorithm to obtain the 
Earth-Moon transfers. Song et al. [62] design a 
technique for a sub-optimal transfer from the Earth to 
the Moon using a continuous low thrust with variable 
magnitude. They combine analytical and numerical 
methods to formulate the optimization problem. It 
shows to be a good choice, if this more complicated 
propulsion system can be used. Then, Assadian and 
Pourtakdoust [63] studied optimal trajectories for an 
Earth-Moon trip using impulsive maneuvers 
combined with genetic algorithms. The transfer time 
and the total increment of velocity are the objective 
functions to be minimized. Another interesting 
research in the one made by Fazelzadeh and 
Varzandian [64], that studied the minimum-time 
Earth–Moon and Moon–Earth transfers using a 
continuous thrust. The trajectories are obtained by 
the time-domain finite element method. The 
formulation of the problem uses the restricted 
three-body problem. The performance index is the 
minimum-time problem with free final time. There 
are also some papers considering the invariant 
manifolds theory to obtain the Earth-Moon transfers. 
References [65] to [67] show some aspects of this 
approach. 
     In particular, reference [68] to [70] shows studies 
of those trajectories considering the optimal 
maneuver and some other aspects of the transfers to 
the Moon shown in the present paper.  

     An important aspect of the specific mission 
studied here is shown in reference [69], where the 
two scenarios considered here are described and 
explained in detail: 
     1) A single mission, with the spacecraft in a 
circular orbit around the Moon at an altitude of 100 
km and 90 degrees of inclination; 
     2) A double mission, with the two spacecrafts in 
different orbits: the main one in a circular orbit 
around the Moon at an altitude of 100 km and 90 
degrees of inclination and a sub-satellite (without 
propulsion) in a elliptical orbit around the Moon with 
semi-major axis of 3000 km, eccentricity of 0.37, 
argument of perigee of 0.25 degrees West and 
inclination of 90 degrees. 
      So, the present research extends previous studies 
mentioned above to cover the sub-optimal cases of 
linear and quadratic control. The sub-optimal 
solutions consume more fuel, but have an easier 
implementation of the hardware and are more 
reliable in terms of implementation. Those 
advantages comes from the fact that the engines need 
to follow a direction that has its motion restricted to a 
specified rule (linear or quadratic) and are not 
required to make fast and unpredictable motions. A 
propulsion system like this is less subjected to fails 
and requires less efforts from the attitude control 
system. An integrated study of orbit and attitude 
control is a good suggestion for future work, but is 
considered out of the scope of the present paper. In 
this way, the question of how much more fuel needs 
to be used to compensate these simplifications is very 
important. 
 
 
2   Impulsive Maneuvers 
The first step to study the Earth-Moon transfers using 
the sub-optimal low thrust maneuvers is to take a 
look at the more basic impulsive maneuvers, where it 
is assumed that the thrust is strong enough to provide 
an almost instantaneous change of the velocity. This 
is necessary in order to find the best transfer 
trajectories that will then be achieved using the low 
thrust propulsion. This study was already made and 
presented in a WSEAS conference in 2008 (see 
reference [68]). In order to compare the different 
strategies for the transfer, those results are required, 
so the main points are repeated here.  
     As explained before, the mission starts with the 
spacecraft leaving the Earth from a parking orbit that 
is circular with an altitude of 200 km and in the plane 
of the motion of the Moon around the Earth. The goal 
is to calculate the velocity increment, transfer time 
and the mass of fuel necessary for several 
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trajectories, to be able to choose one for a more 
detailed analysis. 
     The present research considers two scenarios for 
the mission: having only one satellite or considering 
the existence of a sub-satellite, so constituting a 
mission with two spacecrafts. Both solutions are 
analyzed in more details here. To be compatible with 
reference [68], a final mass of 100 kg around the 
Moon is also used here for the single mission and a 
final mass of 120 kg is used for the double mission. 
So, the present paper adds the possibility of 
sub-optimal solutions, including a linear and a 
quadratic form for the control. Then, the savings that 
can be obtained by these less complex forms of the 
control over the impulsive maneuver, as well as the 
increasing in fuel expenditure that these 
implementations have with respect to the results 
obtained by the optimal maneuver calculated in 
reference [68], are shown.  
     Using the Two-Body model for the system 
composed by the Earth and the spacecraft, we can 
obtain the transfer time for different trajectories [68]. 
The orbits are assumed to be elliptical with perigee of 
6570 km. Table 1 shows the more interesting 
trajectories found and Fig. 1 shows a sketch of those 
trajectories, that are all planar, since the size of the 
Moon is very small when compared to the 
Earth-Moon distance and the fact that the final orbit 
is polar does not require the transfers to be non 
planar. 
 

 
Table 1 - Orbital parameters and transfer time for 

trajectories to the Moon [68]. 
 
Orbit Semi- 

major  
axis (km) 

Eccentricity Transfer Time in 
 hr. (days) 

  1    500000   0.986   58.5 (2.43)  
  2    400000   0.983   61.0 (2.54)  
  3    300000   0.978   67.0 (2.80)  
  4    250000   0.974   73.9 (3.08)  
  5    230000   0.971   77.0 (3.21)  
  6    220000   0.970   83.2 (3.47)  
  7    200000   0.967  100.0 (4.17)  
  8    195485   0.960  119.6 (4.98)  

 
     Assuming now that the propulsion system is 
impulsive, the magnitude of the total velocity 
increment necessary for the maneuvers can be 
obtained. Reference [68] shows the detailed 
calculations. The same calculations are repeated for 
the double mission, but the results are omitted here 
because they are very similar.  

 
 

Fig. 1 – Sketch of the orbits. 
 
     To follow the goals of the present paper and to 
make a comparison of the impulsive approach with 
the low thrust idea, maneuver 6 was chosen because 
it has a good balance between consumption and time 
required for the maneuver. The ∆V for this maneuver 
is 4.05 km/s and the fuel consumed is 237 kg. To 
obtain the fuel consumption we assumed that the 
specific impulse of the fuel is 340 s. The equation 
that relates those two quantities is: 
 
  ∆𝑉𝑉 = 𝑔𝑔0𝐼𝐼𝑠𝑠𝑠𝑠 𝑙𝑙𝑙𝑙 �

𝑚𝑚0
𝑚𝑚𝑓𝑓
�         (1) 

 
where g0 is the acceleration of gravity at the surface 
of the Earth, Isp is the specific impulse of the engine, 
m0 is the initial mass and mf

 

 is the final mass of the 
spacecraft. 

 
3   Low-Thrust Trajectory 
The study of those maneuvers is now extended to 
consider the low thrust case, under different 
hypothesis for the control law. In this situation, a 
continuous force is applied to the spacecraft in order 
to reach the final orbit desired.  
     The spacecraft is assumed to travel in a planar 
Keplerian motion perturbed only by the thrust. This 
thrust has the following characteristics: 
 i) Constant magnitude; 
 ii) Fixed Ejection Velocity; 
 iii) Angular motions that can be controlled; 
 iv) Operation in on-off mode. 
     Then we search for the direction of the force to be 
applied at every instant of time, as well as the fuel 
consumed. The duration of the transfer is also 
obtained in this phase of the study. 
     This is an optimal control problem, formulated as: 
 
Objective Function: Mf, 
 
where Mf is the final mass of the spacecraft, and it 
has to be maximized by the control vector u(.); 

Moon’s
Orbit

Parking
Orbit

1 2 3 4 5 6 7 8
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Constraints: Equations of motion, initial and final 
orbits, and limits in the direction of the force; 
 
Given: gravitational force field, initial and final 
orbits of the satellite, etc. 
 
     To avoid singularities in the equations of motion, 
the following set of variables are used [11], [12], 
[68], [70], [71]: 
 
      X1 = [a(1-e2)/µ]1/2

      X

                               (2) 

2

      X

 = ecos(ω-φ)                                (3) 

3

      X

 = esin(ω-φ)                                                  (4) 

4 = (Fuel Consumed)/m0

      X

                                (5) 

5

      X

 = t                       (6) 

6

      X

 = cos(i/2)cos((Ω+φ)/2)                    (7) 

7

      X

 = sin(i/2)cos((Ω-φ)/2)                              (8) 

8

      X

 = sin(i/2)sin((Ω-φ)/2)                   (9) 

9

       φ = ν +ω - s                       (11) 

 = cos(i/2)sin((Ω+φ)/2)                            (10) 

 
where: 
 
s = range angle of the spacecraft 

 a = semi-major axis 

e = eccentricity 

i = inclination 

ω = argument of periapsis 

ν = true anomaly of the spacecraft 

Ω = argument of the ascending node 

 
     The equations of motion in those variables are 
[11], [12], [68], [70], [71]:  
 
dX1/ds =f1= SiX1F1

dX

                                  (12) 

2/ds=f2=Si{[(Ga+1)cos(s)+X2]F1+GaF2

dX

sin(s)       (13) 

3/ds = f3=Si{[(Ga+1)sin(s)+X3]F1-GaF2

dX

cos(s)     (14) 

4/ds = f4 = SiGaF(1-X4)/(X1

dX

W)                                     (15) 

5/ds = f5 = SiGa(1-X4)m0/X1                                 

dX

(16) 

6/ds = f6 = - SiF3[X7cos(s)+X8

dX

sin(s)]/2                     (17) 

7/ds = f7 = SiF3[X6cos(s)-X9

dX

sin(s)]/2                         (18) 

8/ds = f8 = SiF3[X9cos(s)+X6

dX

sin(s)]/2                    (19) 

9/ds = f9 = SiF3[X7sin(s)-X8

 

cos(s)]/2                          (20) 

where: 

Ga = 1 + X2cos(s) + X3

Si = (µX

sin(s)                     (21) 

1
4)/[Ga3m0(1-X4

)cos()cos(FF1 βα=

)]                    (22) 

                   (23) 

)cos()(FsinF2 βα=                   (24) 

)(FsinF3 β=                    (25) 

 
where: 
 
F = magnitude of the force 

W = ejection velocity of the gases 

ν = true anomaly of the spacecraft. 

 
     The equations for the Lagrange multipliers are 
given below. 
      
𝑑𝑑𝑠𝑠1
𝑑𝑑𝑠𝑠

= −
4∑ 𝑠𝑠𝑗𝑗 𝑓𝑓𝑗𝑗+𝑠𝑠1𝑓𝑓1−𝑠𝑠4𝑓𝑓4−𝑠𝑠5𝑓𝑓5

9
𝑗𝑗=1

𝑋𝑋1
                             (26) 

 
  

𝑑𝑑𝑠𝑠2
𝑑𝑑𝑠𝑠

= 𝑐𝑐𝑐𝑐𝑠𝑠(𝑠𝑠)
𝐺𝐺𝐺𝐺

�3∑ 𝑠𝑠𝑗𝑗𝑓𝑓𝑗𝑗 − 𝑠𝑠4𝑓𝑓4 − 𝑠𝑠5𝑓𝑓5
9
𝑗𝑗=1 � − 𝑆𝑆𝑆𝑆𝑠𝑠2𝐹𝐹1 −

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑠𝑠2(𝑠𝑠)(𝑠𝑠2𝐹𝐹1 − 𝑠𝑠3𝐹𝐹2) − 𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑠𝑠(𝑠𝑠)𝑠𝑠𝑆𝑆𝑙𝑙(𝑠𝑠)(𝑠𝑠2𝐹𝐹2 +
𝑠𝑠3𝐹𝐹1)                                                                                               (27) 
       
𝑑𝑑𝑠𝑠3
𝑑𝑑𝑠𝑠

= 𝑠𝑠𝑆𝑆𝑙𝑙(𝑠𝑠)
𝐺𝐺𝐺𝐺

�3∑ 𝑠𝑠𝑗𝑗𝑓𝑓𝑗𝑗 − 𝑠𝑠4𝑓𝑓4 − 𝑠𝑠5𝑓𝑓5
9
𝑗𝑗=1 � − 𝑆𝑆𝑆𝑆𝑠𝑠3𝐹𝐹1 −

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑠𝑠(𝑠𝑠)𝑠𝑠𝑆𝑆𝑙𝑙(𝑠𝑠)(𝑠𝑠2𝐹𝐹1 − 𝑠𝑠3𝐹𝐹2) − 𝑆𝑆𝑆𝑆𝑠𝑠𝑆𝑆𝑙𝑙2(𝑠𝑠)(𝑠𝑠2𝐹𝐹2 + 𝑠𝑠3𝐹𝐹3)                                                               
            (28) 

 
𝑑𝑑𝑠𝑠4
𝑑𝑑𝑠𝑠

= −�
∑ 𝑠𝑠𝑗𝑗𝑓𝑓𝑗𝑗−𝑠𝑠4𝑓𝑓4−𝑠𝑠5𝑓𝑓5

9
𝑗𝑗=1

𝑚𝑚0(1−𝑋𝑋4)
�             (29) 

 
𝑑𝑑𝑠𝑠5
𝑑𝑑𝑠𝑠

= 0                           (30) 
 
𝑑𝑑𝑠𝑠6
𝑑𝑑𝑠𝑠

=−𝑆𝑆𝑆𝑆𝐹𝐹3[𝑠𝑠7𝑐𝑐𝑐𝑐𝑠𝑠 (𝑠𝑠)+𝑠𝑠8𝑠𝑠𝑆𝑆𝑙𝑙 (𝑠𝑠)]
2

           (31) 
 
𝑑𝑑𝑠𝑠7
𝑑𝑑𝑠𝑠

=𝑆𝑆𝑆𝑆𝐹𝐹3[𝑠𝑠6𝑐𝑐𝑐𝑐𝑠𝑠 (𝑠𝑠)−𝑠𝑠9𝑠𝑠𝑆𝑆𝑙𝑙 (𝑠𝑠)]
2

           (32) 
 
𝑑𝑑𝑠𝑠8
𝑑𝑑𝑠𝑠

=𝑆𝑆𝑆𝑆𝐹𝐹3[𝑠𝑠6𝑠𝑠𝑆𝑆𝑙𝑙 (𝑠𝑠)+𝑠𝑠9𝑐𝑐𝑐𝑐𝑠𝑠 (𝑠𝑠)]
2

            (33) 
 
𝑑𝑑𝑠𝑠9
𝑑𝑑𝑠𝑠

=−𝑆𝑆𝑆𝑆𝐹𝐹3[𝑠𝑠8𝑐𝑐𝑐𝑐𝑠𝑠 (𝑠𝑠)−𝑠𝑠7𝑠𝑠𝑆𝑆𝑙𝑙 (𝑠𝑠)]
2

           (34) 
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     The number of the new state variables is nine and 
this value is larger than the minimum number 
required to specify the system. It means that they are 
not independent.  
     This system is subjected to constraints in state and 
some of the Keplerian elements of the initial and 
final orbits may be specified. All the parameters 
(gravitational force field, initial values of the 
satellite, etc...) are assumed to be known. 
     Considering now the control, the sub-optimal 
approach uses a specific rule for the direction of the 
force to be applied. The most usual one is the linear 
approximation, where the direction is assumed to 
follow a straight line dependence with respect to the 
position of the satellite. In the present paper, this 
approximation is shown and also it goes up to an 
equation of the second order. This means that a 
quadratic parametrization is used for the control law, 
that are specified by the angles of pitch (α), the 
in-plane angle, and yaw (β), the out-of-plane angle. 
The equations for the quadratic form that specify this 
rule are given by: 
 
α = α0 + α' * ( s – s0 ) + α'' * ( s – s0 )2

 
             (35) 

β = β0 + β' * ( s – s0 ) + β'' * ( s – s0 )2

 
      (36) 

where α0, β0, α', β', α'', β'' are the parameters that 
needs to be determined, s is the instantaneous range 
angle that specify the position of the satellite and s0 
is the position where the engine is turned on. To 
obtain the linear case it is only necessary to make α'' 
= β'' = 0.0, to obtain: 
 
α = α0 + α' * ( s – s0 )                                    (37) 
 
β = β0 + β' * ( s – s0 )                                      (38) 
 
     It is also necessary to include constraints in this 
type of problem. They can be represented by the 
equations: 
 

        S ( . ) ≥ 0                (39) 

      
( ) 0

*
0

*

=
−
−

aa
aa

                                         (40) 

     
( ) ( )[ ]
( ) ( ) 0

11
11

**
00

**

=
+−+
+−+

eaea
eaea

                 (41) 

      
( ) 0

*
0

*

=
−
−

ii
ii

                                              (42) 

      
( ) 0

*
0

*

=
Ω−Ω
Ω−Ω

                  (43) 

 
( ) 0

*
0

*

=
−
−
ωω
ωω

                                     (44) 

      
     The first equation is a generic inequality 
constraint, while the other five represents the 
constraints of having the final orbit specified. 
     Using this technique, it is necessary to find a set of 
eight variables (six in the linear case) that optimizes 
the problem (start and end of the application of the 
thrust and the parameters α0, β0, α', β', α'', β'') for 
each thrusting arc". This number of arcs is an input of 
the problem.  
     To solve the nonlinear programming problem, the 
gradient projection method was used [72]. It means 
that, at the end of the numerical integration, in each 
iteration, two steps are taken: 
 
i) Force the system to satisfy the constraints by 
updating the control function according to: 
 
u ui 1 i+

−
= −∇ ∇ ∇f . f. f fT T 1

                           (45) 
 
 
where f is the vector formed by the active constraints; 
 
ii) After the constraints are satisfied, try to minimize 
the fuel consumed. This is done by making a step 
given by: 
 

d
dα+=+ i1i uu                             (46) 

 
where: 
 

d).(
)(

u
u

J
J

∇
= γα                            (47) 

 

[ ]( ) )(J.. 1TT u∇∇∇∇−−=
− ffffId             (48) 

 
 
and I is the identity matrix, d is the search direction, J 
is the function to be minimized (fuel consumed) and 
γ  is a parameter determined by a trial and error 

WSEAS TRANSACTIONS on SYSTEMS Antonio F. B. A. Prado

E-ISSN: 2224-2678 368 Issue 8, Volume 11, August 2012



technique. The possible singularities in equations 
(45) to (48) are avoided by choosing the error 
margins for tolerance in convergence large enough. 
This procedure continues until u ui 1 i+ − < ε  in both 
equations (45) and (46), where ε  is a specified 
tolerance. 
 
  
4   Results 
 Having those equations, it is possible to perform 
several simulations to verify the costs related to the 
use of the optimal, sub-optimal linear and 
sub-optimal quadratic forms for the control. Results 
from reference [68] for the optimal and impulsive 
cases are used to compare the results. It is important 
to emphasize that the low thrust propulsion system 
was applied only for the Earth-Moon trajectory. The 
lunar insertion is still performed by impulsive 
maneuvers. The satellite leaves the Earth from an 
orbit that is circular and has semi-major axis of 6570 
km. Then, it goes to an orbit that has eccentricity 0.97 
and semi-major axis 220000 km. This transfer is 
planar. The value used for the final mass of the 
satellite is 150 kg after the low thrust maneuver for 
the single mission and 180 kg for the double mission. 
These values are compatible with a final mass of 100 
and 120 kg in lunar orbit, respectively. The engine is 
assumed to have a specific impulse of 3500 s, with 
the thrust magnitude assuming the values 200 and 20 
N. Table 2 shows the results. 
     Considering that there are two spacecrafts, it is 
necessary to perform a more complex maneuver to 
take into account that the sub-satellite has no engine. 
So, the insertion into Moon's orbit is performed with 
both spacecrafts together, lying in the orbit designed 
for the sub-satellite. Then, after the separation of the 
spacecrafts, the primary one will be maneuvered to 
its final orbit. 
     Assuming that the optimal maneuver (making the 
insertion at the periapsis of the elliptical orbit) is used 
and considering that, after separating from the 
sub-satellite, the main spacecraft is transferred to its 
final orbit using a bi-impulsive Hohmann Transfer, 
the results for the ΔV required can be obtained. More 
details are shown in reference [68]. 
      Figs. 2 and 3 are taken from reference [68] and 
they show the direction of the thrust for the optimal 
maneuver as a function of the range angle for the 
Low Transfer Maneuvers 1 and 2, respectively. Note 
that only the in-plane angle α is shown, since this is a 
planar maneuver and it implies that β = 0. Those 
figures are repeated here because their forms are 
required for the analysis of the differences between 
the linear and the quadratic sub-optimal approaches. 

Table 2 - Fuel consumed and duration of the 
propelled phase of the transfer [68]. 

 
Imp 1: Single mission using an engine with specific 
impulse of 340 s; 
Imp 2: Double mission using an engine with specific 
impulse of 340 s; 
L. T. 1: Single mission using an engine with 20 N, 
specific impulse of 3500 s, assuming a mass of 150 
kg for the spacecraft after the Low-Thrust maneuver; 
L. T. 2: Single mission using an engine with 200 N, 
specific impulse of 3500 s, assuming a mass of 150 
kg for the spacecraft after the Low-Thrust maneuver;  
L. T. 3: Double mission using an engine with 20 N 
and specific impulse of 3500 s, assuming a mass of 
180 kg for the spacecraft after the Low-Thrust 
maneuver; 
L. T. 4: Double mission using an engine with 200 N 
and specific impulse of 3500 s, assuming a mass of 
180 kg for the spacecraft after the Low-Thrust 
maneuver; 
E-M: Fuel required for the Earth-Moon trajectory; 
Ins.: Fuel required for the lunar insertion for a 
specific impulse of 340 s; 
Total: Total fuel required (Earth-Moon trajectory and 
lunar insertion). 
Time: Duration of the propelled phase of the transfer, 
which is the time that the engine is turned on. So, this 
time is zero for the impulsive assumption. 
 
     The next step is to apply the linear sub-optimal 
control for the same maneuvers. The same idea used 
in reference [68] of using two different engines with 
20 N and 200 N is used again. These values can be 
reached with a more powerful propeller or using a 
combination of several smaller propellers. The goal 
of the present research is to find alternatives for the 
trajectories, without the concern if such a propeller is 
available or not in current times. The maneuvers used 

Mission E-M 
(kg) 

Ins. 
(kg) 

Total 
(kg) 

Time  
(h)  

Imp 1 205.78 31.40 237.18 0.00             
     

Imp 2 247.69 38.16 285.85 0.00 
     

L. T. 1 22.37 31.40 53.77 10.97       
     

L. T. 2 14.75 31.40  46.15 0.68 
     

L. T. 3 27.05 38.16 65.21 12.89 
     

L. T. 4 18.02 38.16 56.18 0.86 
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the constraint of starting at the range angle equal to 
zero.  
 

 
 

Fig. 2. – Pitch angle (deg) vs. Range angle (deg) for 
Low Thrust 1 maneuver. 

 
     Table 3 shows the results for the single mission 
and Table 4 shows the equivalent results for the 
double mission. In these Tables, maneuver 1 is the 
optimal one for the engine with 20 N level, maneuver 
2 represents the situation where the thrust level is 20 
N and the control is linear and maneuver 3 is the one 
with the same 20 N propeller, but the control is 
quadratic. Maneuver 4 is optimal with 200 N 
magnitude for the engine, maneuver 5 is realized 
with the thrust of 200 N and linear control and 
maneuver 6 has 200 N and use the quadratic control. 
Note that the transfers are not restricted to be 
completed in a single revolution, so values for Sf

     The results quantify some expected aspects, as 
shown below. When the thrust level is increased (in 
the simulations shown here this increase is from 20 N 
to 200 N) there is an almost proportional decrease in 
the time required for the transfer. Figs. 2 and 3 show 
the results in terms of the range angle, but when this 
quantity is converted to time this proportion is kept. 

 
larger than 360 degrees means that the transfer took 
more than one revolution to be completed. 

     Regarding the sub-optimal approach, the results 
show that this is an interesting idea. The fuel 
consumption is increased when compared to the 
optimal solutions, as expected, but this increase is of 
the order of only a few percent. 

 
Fig. 3 – Pitch angle (deg) vs. Range angle (deg) for 

Low Thrust 2 maneuver. 
 
      
     So, considering the advantages of this type of 
solution, in general, it is a very interesting approach. 
The difference between the linear and the quadratic 
approach depends of each situation. The first two 
examples shown here exemplify very well this 
variation. The solution shown in Fig. 2 is very far 
from linear, so a quadratic form for the control 
increases the quality of the approximation very 
much. On the other side, Fig. 3 shows a solution that 
is very close to linear. So, in this situation, the linear 
approximation is almost as good as the quadratic one. 

 
 
6   Conclusion 
Quadratic and linear sub-optimal controls were used 
to determine Earth-Moon trajectories that has the 
goal of minimizing the fuel consumption. 
    Comparing the results obtained here for this 
problem with an optimal implementation available in 
the literature, it seems that this sub-optimal approach 
is adequate for the Earth-Moon transfer, since the 
extra fuel consumed is not very large. 
      The performance of the quadratic approximation 
is always better than the linear one, but this 
difference depends on the situation. In some 
situations, like in the trajectory shown in Fig. 3, the 
linear approximation is almost as good as the 
quadratic one. In some others, like the example 
shown in Fig. 2, this difference is larger.  
      The algorithms have good numerical behavior, 
but it is not fast enough to allow real time 

-200 0 200 400 600 800 1000 1200
-5

0

5

10

15

20

25

30

Range Angle (Deg)

Pitch Angle (Deg)

0 20 40 60 80 100 120 140 160 0 

5 

10 

15 

20 

25 

30 

35 

Range Angle (Deg) 

Pitch Angle (Deg) 

WSEAS TRANSACTIONS on SYSTEMS Antonio F. B. A. Prado

E-ISSN: 2224-2678 370 Issue 8, Volume 11, August 2012



applications. Process time (CPU) is less than a 
minute for simple maneuvers, but takes more than an 
hour when several constraints and/or thrusting arcs 
are required.  
 
 

Table 3 
Sub-optimal transfers (linear and quadratic) for a 

single mission. 

 
 

Table 4 
Sub-optimal transfers (linear and quadratic) for a 

double mission. 
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